
Language-level Transactions for Modular Reliable Systems

C. Scott Ananian Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{cananian,rinard}@csail.mit.edu

The transaction model is a natural means to express atom-
icity, fault-tolerance, synchronization, and exception han-
dling in reliable programs. A (lightweight, in-memory) trans-
action can be thought of as a sequence of program loads and
stores which eithercommits or aborts. If a transaction com-
mits, then all of the loads and stores appear to have run atom-
ically with respect to other transactions. That is, the trans-
action’s operations appear not to have been interleaved with
those of other transactions or non-transactional code. If a
transaction aborts, then none of its stores take effect and the
transaction can be safely restarted, typically using a backoff
algorithm to preclude live-lock. A subset of the traditional
ACID database semantics are provided.

Although transactions can be implemented using mu-
tual exclusion (locks), we present algorithms utilizing non-
blocking synchronization to exploit optimistic concurrency
among transactions and provide fault-tolerance. A process
which fails while holding a lock within a critical region
can prevent all other non-failing processes from ever mak-
ing progress. It is in general not possible to restore the locked
data structures to a consistent state after such a failure. Non-
blocking synchronization offers a graceful solution to this
problem, as non-progress or failure of any one thread or mod-
ule will not affect the progress or consistency of other threads
or the system.

Implementing transactions using non-blocking synchro-
nization offers performance benefits as well. Even in
a failure-free system, page faults, cache misses, context
switches, I/O, and other unpredictable events may result in
delays to the entire system when mutual exclusion is used to
guarantee the atomicity of operation sequences; non-blocking
synchronization allows undelayed processes or processorsto
continue to make progress. Similarly, in real-time systems,
the use of non-blocking synchronization can preventpriority
inversion in the system by allowing high priority threads to
abort lower priority threads at any point.

We show how to integrate non-blocking transactions into
an object-oriented language, “transactifying” existing code to
fix existing concurrency bugs and using transactions for mod-
ular fault-tolerance, backtracking, exception-handling, and
concurrency control in new programs.

We propose the use of compiler-supported “atomic” blocks
to specify synchronization. This is less error-prone than man-
ual maintenance of a locking discipline: deadlocks may be

This research was supported by DARPA/AFRL Contract F33615-00-C-1692.

introduced when locks are not acquired and released in a
highly disciplined manner, and the specification of locking
discipline cuts across module boundaries. Races are common
when multiple shared objects are involved in an operation,
each with its own lock. We provide several examples of such
problematic locking code. A non-blocking transaction imple-
mentation prevents inadvertent deadlocks, andatomic dec-
larations implemented with the transaction mechanism can
extend across method invocations and module boundaries to
protect multiple objects involved in an operation without al-
lowing races between them. An optimistic non-blocking im-
plementation provides performance improvements over lock-
ing strategies in some cases as well.

Language-level transactions are used as a general
exception-handling and backtracking mechanism. Instead of
forcing the programmer to manually track changes made to
program state in order to implement proper fault recovery,
we can handle the exception using transaction rollback to au-
tomatically restore a safe program state, even if the fault oc-
curred in the middle of mutating shared objects. An efficient
and graceful transaction mechanism integrated into the pro-
gramming language encourages a robust programming style
where recovery and retry after an unexpected condition is
made simple and faults and recovery do not break abstraction
boundaries.

We describe an efficient pure-software transaction mecha-
nism we have implemented for programs written in Java. We
also discuss our design and simulation (with Asanović, Kusz-
maul, Leiserson, and Lie) of minimally-intrusive architecture
extensions which allow most transactions to complete with
near-zero overhead. Unlike previous hardware approaches,
our scheme is scalable and supports transactions of unlim-
ited size, although performance is best for transactions which
fit in local cache. Finally, we describe our hybrid hardware-
software scheme combining the speed hardware provides for
small transactions with the flexibility the software implemen-
tation allows for large or long-lived transactions.

Integrating transactions into the programming language
and implementing them with the high-efficiency techniques
described enables the creation of software with higher reli-
ability. Synchronization is more robust and its specification
is modular and less error-prone, and faults and exceptions in
general can be soundly handled with low overhead using the
transaction mechanism.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Language-level Transactions for Modular Reliable Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science and Artificial Intelligence Laboratory Massachusetts
Institute of Technology Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Ananian/Rinard: Language-Level Transactions, HPEC '04

Language-level Transactions for
Modular Reliable Systems

C. Scott Ananian Martin Rinard
cananian@csail.mit.edu rinard@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

HPEC 2004

Ananian/Rinard: Language-Level Transactions, HPEC '04

Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is hard)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conventional Locking: Ordering

● When more than one object is involved in a
critical region, deadlocks may occur!
– Thread 1 grabs A then tries to grab B
– Thread 2 grabs B then tries to grab A
– No progress possible!

● Solution: all locks ordered
– A before B
– Thread 1 grabs A then B
– Thread 2 grabs A then B
– No deadlock

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conventional Locking: Ordering
● Maintaining lock order is a lot of work!
● Programmer must choose, document, and

rigorously adhere to a global locking protocol for
each object type
– development overhead!

● All symmetric locked objects must include lock
order field, which must be assigned uniquely
– space overhead!

● Every multi-object lock operation must include
proper conditionals
– which lock do I take first? which do I take next?
– execution-time overhead!

● No exceptions!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Multi-object atomic update

● Programmer's mental model of locks can be
faulty

● Monitor synchronization: associates locks with
objects

● Promises modularity: locking code stays with
encapsulated object implementation

● Often breaks down for multiple-object scenarios
● End result: unreliable software, broken

modularity

Ananian/Rinard: Language-Level Transactions, HPEC '04

A problem with multiple objects
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public synchronized StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public synchronized int length() { return count; }
 public synchronized void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Fault-tolerance

● Locks are irreversible
● When a thread fails holding a lock, the system

will crash
– it's only a matter of time before someone else

attempts to grab that lock

● What are the proper semantics for exceptions
thrown within a critical region?
– data structure consistency not guaranteed

● Asynchronous exceptions?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Priority Inversion

● Well-known problem with locks

● Described by Lampson/Redell in 1980 (Mesa)

● Mars Pathfinder in 1997, etc, etc, etc

● Low-priority task takes a lock needed by a high-
priority task -> the high priority task must wait!

● Clumsy solution: the low priority task must
become high priority

● What if the low priority task takes a long time?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is easy?)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Language-level Transactions

● Locks are the wrong model for expressing
synchronization!

● Atomicity is a more natural (and modular) way to
specifying the system

● Let's use transactions to implement atomic
regions

● What sort of transactions do we want?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Transactions (definition)

● A transaction is a sequence of loads and stores
that either commits or aborts

● If a transaction commits, all the loads and stores
appear to have executed atomically

● If a transaction aborts, none of its stores take
effect

● Transaction operations aren't visible until they
commit or abort

● Simplified version of traditional ACID database
transactions (no durability, for example)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Non-blocking synchronization
● Although transactions can be implemented with mutual

exclusion (locks), we are interested only in non-blocking
implementations.

● In a non-blocking implementation, the failure of one
process cannot prevent other processes from making
progress. This leads to:

– Scalable parallelism

– Fault-tolerance

– Safety: freedom from some problems which require careful
bookkeeping with locks, including priority inversion and
deadlocks

● Little known requirement: limits on trans. suicide

Ananian/Rinard: Language-Level Transactions, HPEC '04

Making StringBuffer atomic
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public synchronized StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public synchronized int length() { return count; }
 public synchronized void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Making StringBuffer atomic
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public atomic StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public atomic int length() { return count; }
 public atomic void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

● Simple network flow algorithm
● “Flow” moved from node to node in the graph
● Updates to two different objects
● Serial version above requires a complicated

parallel version when using locks

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
 Object lock1, lock2;
 if (v1.id < v2.id) { /* avoid deadlock */
 lock1 = v1; lock2 = v2;
 } else {
 lock1 = v2; lock2 = v1;
 }
 synchronized (lock1) {
 synchronized (lock2) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
 }
 }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
 atomic {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
 }
}

● Specifying desired atomicity property directly is
much simpler for the programmer!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Addressing reliability, fault
tolerance, and priority inversion

● A proper implementation of the transaction
mechanism allows constant-time abort

– Allows us to solve priority inversion by aborting
the low-priority thread!

● Atomicity properties are modular – no global
lock ordering required

● A reasonable semantics for exceptions: critical
region aborted/undone. No dangling locks.

● Failure of one thread will not cause the system to
fail!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is hard)

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Software Transaction
Implementation
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location

involved in a transaction”
– Object points to a linked list of versions,

containing values written by (in-progress,
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the
first version owned by a committed transaction
on the version list”

– Values which are “really” FLAG are handled with
an escape mechanism

Ananian/Rinard: Language-Level Transactions, HPEC '04

Transactions using version lists

Transaction ID #23

Transaction ID #56Transaction ID #68

VersionVersion

Object #2

Object #1

Version Version

FLAG

'B'

FLAG

'A'
FLAG

2.71828

{OID25}

OtherClass

MyClass

FLAG

3.14159
FLAG

23 55

FLAG

WAITING COMMITTED

COMMITTED

owner

next

field1

field2field2

field1

next

owner

type

versions

readers

field1

field2

field2

field1

{OID68}
readers

versions

type

owner

next

field1

field2 field2

field1

next

owner

statusstatus

status

.
. . .

. . .
.

Ananian/Rinard: Language-Level Transactions, HPEC '04

Performance
● Non-transactional code only needs to check

whether a memory operand is FLAG before
continuing.

– On superscalar processors, there are plenty of
extra functional units to do the check

– The branch is extremely predictable

– This gives only a few % slowdown

● Once FLAGged, transactional code operates
directly on the object’s “version”

● Creating versions can be an issue for large
arrays; use “functional array” techniques

Ananian/Rinard: Language-Level Transactions, HPEC '04

Non-blocking algorithms are hard!
● In published work on Synthesis, a non-blocking

operating system implementation, three separate
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject callback

handling
● It's hard to get these right! Ad hoc reasoning

doesn't cut it.
● Non-blocking algorithms are too hard for the

programmer
● Let's get it right once (and verify this!)

Ananian/Rinard: Language-Level Transactions, HPEC '04

The Spin Model Checker
● Spin is a model checker for communicating

concurrent processes. It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela
language, which describe infinite executions.

● Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating

complexity in a verifiable component

Ananian/Rinard: Language-Level Transactions, HPEC '04

Spin theory
● Generates a Büchi Automaton from the Promela

specification.
– Finite-state machine w/ special acceptance

conditions
– Transitions correspond to executability of

statements
● Depth-first search of state space, with each state

stored in a hashtable to detect cycles and
prevent duplication of work
– If x followed by y leads to the same state as y

followed by x, will not re-traverse the succeeding
steps

● If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate
coverage metric

Ananian/Rinard: Language-Level Transactions, HPEC '04

Verified Software Transactions

● Modelled the software transaction
implementation in Promela

● Low-level model – every memory operation
represented

● Spin used 16G of memory to exhaustively verify
the implementation within a 6-version 2-object
scope.

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware Implementation
● Following earlier work by Knight '86, Herlihy and

Moss '92, '93
● Cache is used to store uncommitted

transactional state (marked with a T bit)
● Main memory contains 'backup state'
● Cache-coherence protocol extended to

coordinate transactions
● Our recent work (Ananian, Asanović, Kuszmaul,

Leiserson, Lie HPCA 2005) overcomes
transaction-size limitations in earlier designs

● Near-zero performance overhead.
– Piggy-backs on existing cache coherency traffic

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware Transaction Cache
Organization

● Each cache line gets a “T” bit indicating that this
line is involved in a transaction

● On abort, “T” lines are invalidated
● On commit, the T bits are cleared
● Overflow mechanism

Overflow
Handler

index offset

datatagdatatag

Overflow Storage

Uncached DRAM

tag
Address

Way 0 Way 1

Overflow
base register

T TO . . .

. . .

Ananian/Rinard: Language-Level Transactions, HPEC '04

Register File Modifications
● Minor

modifications to
the processor
rename table to
support register
restore after
transaction
abort.

1

0

FIFO

FIFO

To Register Renaming Table

Physical Registers

active

commit

free

Reorder Buffer

active

Rename Table

Register
Free List

Register Reserved
List

P56
P56

S

S

P2

. . .

S

S
P56

LPR

P127

P56

P0

snapshots
saved?

R31

R0

snapshots

. . .

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware/Software Implementation
● Hardware transaction implementation is very

fast! But it is limited:
– Slow once you exceed Cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort,

execute transaction in software
– Need to ensure that the two algorithms play nicely

with each other (consistent views)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Overcoming HW size limitations
● Simple node-push benchmark
● As xaction size increases, we eventually run out

of cache space in the HW transaction scheme

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HTM Transactions
stop fitting after
this point

Ananian/Rinard: Language-Level Transactions, HPEC '04

Overcoming HW size limitations
● Simple node-push benchmark
● Hybrid scheme best of both worlds!

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HSTM

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conclusions
● Language-level transactions provide a more-

modular way to build reliable concurrent
systems.

● Transactions can reduce software complexity
and eliminate common programmer mistakes

● We've implemented a transaction mechanism for
Java programs using software, hardware, and (in
progress) joint approaches using the FLEX
compiler infrastructure.

● Transactions can be efficient and practical to
use!

	Presentation:
	Abstract:
	Agenda:

